技术博客
衡石技术博客是一个围绕数据分析和BI领域提供丰富实用的技术文章、案例分析和实战经验的博客平台。

免费试用

全部

帮助手册

API文档

课堂中心

技术博客

白皮书

打破大模型黑盒:衡石ChatBI的权限控制与数据安全实践
作者:HENGSHI 时间:2025-05-13

当企业试图将大模型(如GPT-4、DeepSeek)融入BI系统时,往往陷入两难困境:既要利用大模型的自然语言理解能力提升分析效率,又要避免其“黑盒特性”导致数据泄露与权限失控。传统大模型方案直接将原始数据暴露给模型,存在敏感字段误读、越权查询、审计盲区等风险。

衡石科技的ChatBI通过分层权限控制架构动态数据安全治理,在保留大模型分析能力的同时,彻底规避其黑盒风险。其核心逻辑是:让大模型“看不见”数据,让业务用户“看得见”安全。本文将从技术挑战、架构设计与实践成效三方面,解析衡石如何破解这一行业难题。


一、大模型+BI的四大安全挑战

  1. 敏感数据泄露风险

    1. 大模型可能无意间“记忆”并输出敏感信息(如客户手机号、交易金额)。

  2. 越权查询与权限穿透

    1. 传统方案依赖模型自身理解权限规则,但大模型无法准确识别动态权限边界(如“销售经理仅能查看本区域数据”)。

  3. 审计与溯源困难

    1. 模型生成的SQL或分析结论缺乏可解释性,难以定位数据异常根源。

  4. 多租户场景下的数据隔离

    1. SaaS平台需确保不同租户数据完全隔离,而大模型可能因共享计算资源导致数据泄露。


二、技术架构:权限控制与数据安全的四层防线

衡石ChatBI采用“安全沙箱+动态理”架构,通过四层防护机制实现端到端管控:

1. 权限控制层:细粒度访问规则引擎

  • 规则定义

    • 支持按角色(用户组)、数据包(业务域)、字段级(如手机号)、行级(如区域=华东)设置访问策略;

    • 与HR系统集成,自动同步组织架构与岗位权限。

  • 动态拦截

    • 在查询进入大模型前,通过预处理器剥离无权限字段。例如,客服角色查询“客户信息”时,自动隐藏“账户余额”字段。

2. 数据脱敏层:场景化动态脱敏

  • 静态脱敏:对存储中的敏感字段(如身份证号)进行加密或哈希处理;

  • 动态脱敏:根据查询者身份实时改写返回结果。例如:

  • sql

  • -- 原始查询:SELECT phone FROM customers;  -- 低权限用户实际获得:SELECT SUBSTR(phone,1,3)+'****'+SUBSTR(phone,8) FROM customers;  

3. 安全查询网关:大模型与数据的物理隔离

  • 架构设计

    • 大模型仅处理元数据(如指标名称、维度关系),不接触原始数据;

    • 所有查询请求由安全网关转换为标准化指令(HQL),再交由BI引擎执行。

  • 执行流程

    • 用户提问:“华东区高净值客户数量”;

    • 模型解析为指标参数:区域=华东,客户等级=高净值

    • 安全网关校验权限后生成HQL,触发数仓查询;

    • 返回结果经脱敏处理,最终呈现给用户。

4. 审计追溯层:全链路可观测性

  • 日志记录

    • 完整记录用户身份、查询内容、数据范围、执行结果,支持双向追溯(从结果反查原始查询);

  • 指标血缘可视化

    • 展示指标计算路径,快速定位异常。例如,“客户流失率”异常可追溯至“最后一次登录时间”指标逻辑错误。


三、关键技术突破

  1. NL2Metrics替代NL2SQL

    1. 传统方案风险:直接生成SQL可能导致越权访问;

    2. 衡石创新:将自然语言转换为指标语言(HQL)

    3. 优势:避免暴露表结构,且HQL需通过统一语义层权限校验。

  2. 动态上下文感知的权限继承

    • 在“华东销售群”中提问“客户列表”,自动添加过滤条件;

    • 通过IM机器人发起查询时,继承群组预设的数据范围。

    1. 场景自适应:根据用户所在环境自动附加权限约束。例如:

  3. 零信任架构下的多方计算

    1. 隐私保护:在跨部门联合分析时,采用多方安全计算(MPC)技术,确保各方数据不离开本地即可完成计算。

    2. 案例:某银行在不共享客户明细的前提下,联合第三方完成“区域性消费偏好分析”。


四、行业实践:从技术合规到业务价值

1. 金融行业:合规审计与客户隐私保护

  • 挑战:需满足《个人信息保护法》与银保监会审计要求,且客户经理只能查看授权客户数据。

  • 方案

    • 行级权限控制:客户经理仅能访问名下客户;

    • 动态脱敏:对身份证号、联系方式等字段进行部分隐藏;

    • 审计日志:记录所有查询行为,支持监管部门抽查。

  • 成效:合规风险降低90%,审计效率提升70%。

2. 医疗行业:患者数据安全与科研分析平衡

  • 挑战:科研人员需分析患者数据,但不能获取个人身份信息。

  • 方案

    • 静态脱敏:将患者姓名替换为匿名ID;

    • 字段级权限:限制科研人员仅能访问诊断结果、用药记录等非敏感字段。

  • 成效:数据使用申请审批时间从3天缩短至1小时,科研论文产出效率提升40%。

3. 零售行业:多租户数据隔离与协同分析

  • 挑战:SaaS平台需服务数百个品牌方,确保数据完全隔离且支持跨品牌趋势分析。

  • 方案

    • 数据沙箱:每个租户独立存储空间;

    • 聚合分析:通过HQL定义跨租户指标(如“行业平均库存周转率”),仅返回聚合结果,不泄露明细。

  • 成效:客户续费率提升25%,跨品牌分析报告生成时间从1周缩短至10分钟。


五、未来展望:从被动防御到主动免疫

衡石的实践表明,数据安全不是大模型落地的阻碍,而是智能化升级的基石

AI驱动的动态风险感知

  • 利用机器学习实时识别异常查询模式(如高频敏感字段访问),自动触发拦截或二次认证。

  • 在保护数据隐私的前提下,支持跨企业联合模型训练与知识共享。


大模型的“黑盒”不应成为企业数智化的绊脚石。衡石ChatBI通过权限控制与数据安全的原子化设计,证明AI能力与安全合规可以并行不悖。当技术架构真正实现“数据可用不可见,权限可视不可越”,企业方能放心拥抱智能分析革命。

衡石注册banner.jpg


丰富的资源 完整的生态
邀您成为衡石伙伴

电话咨询:15810120570

公司邮箱:hi@hengshi.com

北京市海淀区西小口路66号中关村东升科技园B-2楼D201室

上海市黄浦区延安东路550号海洋大厦29楼2903室

广东省深圳市光明区光源五路宝新科技园4栋707号

扫码关注